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Abstract

We have developed a new method for the prediction of the protein secondary structure from the amino acid sequence. The method is based
on the most recent version (IV) of the standard GOR (J Mol Biol 120 (1978) 97) algorithm. A significant improvement is obtained by
combining multiple sequence alignments with the GOR method. Additional improvement in the predictions is obtained by a simple
correction of the results when helices or sheets are too short, or if helices and sheets are direct neighbors along the sequence (we require
at least one residue of coil state between them). The imposition of the requirement that the prediction must be strong enough, i.e. that the
difference between the probability of the predicted (most probable) state and the probability of the second most probable state must be larger
than a certain minimum value also improves significantly secondary structure predictions. We have tested our method on 12 different proteins
from the Protein Data Bank with known secondary structures. The average quality of the GOR prediction of the secondary structure for these
12 proteins without multiple sequence alignment was 63.4%. The multiple sequence alignments improve the average prediction to 71.9%.
The correction for short helices and sheets and coil states separating sheets and helices improve further the average prediction to 74.4%.
Setting the 10% minimum difference between the most probable and the second probable conformation leads to 77.0% accuracy of the
prediction, while increasing this limit to 20% increases the average accuracy of the secondary structure prediction to 81.2%. © 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The prediction of the structure of a protein from its
sequence is one of the most important and fundamental
problems in modern science. With the rapid advancement
in the Human Genome Project and the gene sequencing
techniques in recent years, an enormous amount of informa-
tion about gene sequences and translated protein sequences
has been obtained. However, the available information
about the protein structures (which is more relevant to
protein function) is scarce. Only a small fraction of all
proteins have known three-dimensional structure published
in the Protein Data Bank (PDB). On 29th December 1999,
the PDB database contained 11,363 known protein struc-

¥ This paper was originally submitted to Computational and Theoretical
Polymer Science and received on 14 December 2000; received in revised
form on 7 March 2001; accepted on 14 March 2001. Following the incor-
poration of Computational and Theoretical Polymer Science into Polymer,
this paper was consequently accepted for publication in Polymer.
* Corresponding author.
E-mail address: kloczkoa@mail.nih.gov (A. Kloczkowski).

tures. The number of known structures in the PDB will
probably exceed 13,000 by the end of 2000, but is still
growing much more slower than the number of newly
discovered protein sequences.

The prediction of tertiary structure from sequence is an
ultimate goal of all protein folding theories. This is however
theoretically difficult and will likely remain a computation-
ally challenging problem. Many methods of prediction of
the protein tertiary structure use as a starting point some
information about the protein secondary structure. The
more computationally feasible problem than the prediction
of the protein tertiary structure is the prediction of the
secondary structure from the protein sequence. The second-
ary structures of proteins consist of several structural
elements such as a-helices, B-sheets, coils and turns. Each
residue in the sequence belongs to one of these groups, and
by analogy with polymer theory we may define conforma-
tional states. The conformational states are o-helices (H),
B-strands or extended states (E), coils (C) and turns (T).
Frequently (also in the recent version of the GOR method),
turns (T) are classified as coil (C), which reduces the
number of conformational states to three states: H, E
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and C. The prediction of the protein secondary structure
from its amino acid sequence thus corresponds to the predic-
tion of the sequence of the H, E, C conformational states.
There are many diverse methods for the prediction of
secondary structures. One of the earliest and most
successful methods was the GOR method developed
by Garnier and coworkers [1-9]. The GOR method
was based on information theory techniques, and the
details of this method will be given in the next chapter.
Newer methods use a variety of artificial intelligence
techniques such as neural networks [11,14,23,25-27]
machine learning [12], nearest neighbor algorithms
[4,13] and combine approaches [3,15-18]. A detailed
review of the problem of the prediction of conforma-
tions of proteins from a sequence is given in Ref. [19].
Cuff and Barton developed a set of about 400 protein
domains to evaluate the performance of various protein
secondary structure prediction algorithms [24]. Several
recently developed algorithms have the accuracy of the
prediction around 75% [23,25-27,29]. According to
Frishman and Argos, the accuracy of the secondary structure
prediction may reach 80—85% in near future [28].

2. Method

Our approach is based on combining multiple sequence
alignments with the GOR method. The GOR method is one
of the most successful schemes for the prediction of the
secondary structure from the protein sequence. The method
was proposed by Garnier, Osguthorpe and Robson [1] in
1978, and the name of this method is taken from the first
letters of the names of the authors. The method has been
further developed in a series of publications [2—7]. The
basic idea behind the GOR method is the use of the form-
alism of information theory and Bayesian statistics to relate
the amino acid sequence to the protein secondary structure.
The basic mathematical object in information theory is the
information function /(S,R)

I(S;R) = log[P(S[R)/P(S)] ey

defined as a logarithm of the ratio of the conditional
probability P(S|R) of observing conformation S, (where
S is one of the three states: helix (H), extended (E) or
coil (C)) for residue R (where R is one of the 20 possi-
ble amino acids) and the probability P(S) of the occur-
rence of S. The present version of the GOR program
(GOR 1V) uses the three conformational states H, E and
C. From the protein database of sequences with known
secondary structure it is possible to estimate the information
function I(S;R).

The observation of the given residue in state S depends
not only on the type of the amino acid R but on other amino
acids in the sequence, especially those which are relatively
close sequential neighbors.

It is convenient to use in the analysis the information
difference

I(AS:R,Ry,...,R,) = I(S;R,R,,...,R,) — I(n

- S;RI,R29"'»R]1) (2)

where n — S denotes the conformations different than S, i.e.
if Sis Hthenn — S is E and C.

Information theory in general enables decomposing the
information brought to a complex event into the sum of
information of simpler events, generally

I(AS;R|,R;,...,R,) = I(AS;R)) + I(AS;R,|R))

+ 1(AS,R3|R1,R2) + -

+ I(AS,R,|R|,R;,...,R, ) 3)

The GOR method uses a window of 17 residues, i.e. for a
given residue j only the first eight sequentially neighboring
residues on each side of j are included. The version IV of
GOR method uses the pair-wise approximation for the infor-
mation function so that

P(S;, LocSeq)

1
o8 P(n — S;,LocSeq)
_ 2 *Zg tog S0 Ry Rya)
17, = ~P0n—S.Ri,.Rip,)

n>m

15 +8
= ﬁmz Io

=3

P(Sj’ Rj+m)

_ 4
P(n — S.R;1) @

Here Y, 8 ¢ denotes the summation over the
window m between -8 and +8. The pair frequencies
of residues R;.,, and R;,, with R; occurring in confor-
mations S; and n — S; are calculated from the database.
The GOR IV program uses a database of 267 proteins
with known structure. All proteins in the database
have their structure determined with resolution better
that 2.5 A. Based on these experimentally determined
frequencies (from the GOR database) and the approxi-
mations mentioned above the GOR program can calcu-
late probabilities of conformational states for any
sequence. The GOR 1v program can be accessed through
the WWW server located at NIH through the link http://
abs.cit.nih.gov/gor/.

The server takes as input the query sequence in FASTA
format and predicts its secondary structure. For each residue
i along the sequence the program calculates the probabilities
Pu» Pe and pc and the secondary structure conformational
prediction (H, E or C). The probabilities are normalized
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! Jx0184

~VKVPEPFAWNESFATSYKNIDLEHRTLFNGLFALS - EFNTRDQLLACKEVFVMHFRDEQGQMEK ~ ANYE~HFEEHRG THEGFLEKMGHWKA PVAQKD IKFGMEWLVNHI PTEDFKYKGKL

! 550177
~VKVPAPFAWNEDFATSYKFIDLEHRTLFNGLFALS-EFNTRDQLLACKEVFVMHFRDEQGQOMEK -ANYE-HFEEHKG THEGFLEKMGHWKAPVAQKDIRFGMEWLVNHI PAEDFKYKGKL
! JT0560
~MKIPVPYAWTPDFKTTYENIDSEHRTLFNGLFALS-EFNTQHQLNAAIEVFTLHFHDEQGQMIR - SNYV-NTKEHTDITHNGFMDTMRGWQS PVPQKALKDGMEWLANHI PTEDFKYKGKL
! S50178
~-MKVPAPYAWNSDFATTYENIDSEHRTLFNGLFALA-EFNTLTQLNAATEVF TLHFHDEQGOMIR - SNYV-NTKEHTD THNGFMDVMRGWR S PVPQODLLAGMAWLANHI PTEDFKYKGKL
! 1HMO_A

GFPIPDPYCWDISFRTFYTIIDDEHKTLFNGILLLSQA-DNADHLNELRRCTGKHFLNEQQLMQS - SQYA-GYAEHKKAHDDF THKLDTWDG--~ =~ DVTYAKNWLVNHIKTIDFKYRGKI
! HRTHBD

GFPIPDPYCWDISFRTFYTIVDDEHKTLFNGILLLSQA-DNADHLNELRRCTGKHFLNEQQLMQOA-SQYA-GYAEHKKAHDDF IHKLDTWDG -~ - -~ DVTYAKNWLVNHIKTIDFKYRGKI
! HRGG

GFPIPDPYVWDPSFRTFYSIIDDEHKTLFNGIFHLAID-DNADNLGELRRCTGKHFLNEQVLMQA - SQYQ-FYDEHKKEHEGF THALDNWKG-- - - - DVKWAKSWLVNHIKTIDFKYKGKI
! HRTH

GFPIPDPYGWDPSFRTFYSIIDDEHKTLFNGIFHLAID-DNADNLGELRRCTGKHFLNEQVLMQA-SQYQ-FYDEHKKAHEEF IRALDNWKG - -~~~ DVKWAKSWLVNHIKTIDFKYKGKI
! S38261

GFEIPEPYKWDESFQVFYEKLDEEHKQIFNAIFALCGG-NNAGNLK SLVDVTANHFADEEAMLKASASYG-DFDSHKKKHEDF LAV IRGLGAPVPQDK INYAKEWLVNHIKGTDFGYKGKL
! 516190

GFEVPEPFKWDESFQVF YDKLDEEHKQIFNAIFALGGG-NNADNLKKMIDVTANHFADEEAMMLASAA YKSEHPGHKKKHEDFLAVIRGLSAPVPNDKLLYAKDWLYNHIKGTDF TYKGKL
! S29264

=Y DI PEPF RWDE S KV Y E - = e e e e e e e e e e e e e e e e e e  —m—————
! 523922
PFDIPEPYVWDESFRVFYDNLDDEHKGLFKGVFNCAADMS SAGNLKHL IDVTTTHFRNEEAMMDA - AKYE-NVV PHKQMHKDF LAKLGGLKAPLDQGT IDYAKDWLVQHIKTTDFKYKGKL
! PS0350

GFDIPEPYVWDESFRVFYDLLDDEHKGLFQG= = = == = = = = = = = = = e e e e e e e e e e e e e e e
! HRTHM

GWEI PEPYVWDESFRVFYEQLDEEHKK I FKGIFDCIRD-NSAPNLATLVKVTTNHF THEEAMMDA - AKY S~ EVVPHKKMHKDF LEK IGGLSAPVDAKNVDYCKEWLVNH IKGTDFKYKGKL
! HRIN

GFPVPDPF IWDASFKTFYDDLDNQHKQLFQAILTQG-NVGGATAGDNAYACLVAHFLFEEAAMQV -AKYG-GYGAHKAAHEEFLGKVKGGSA -~ -~ - DAAYCKDWLTQHIKTIDFKYKGKL
! A29667

-FPIPIPYCW-~-LLRTLIKKIQ--~-AVIPKGVLAMT -~-~----~ VAQVCHVVP-~---~-~ LLVG---=~-mmmmmm oo GIIQQL--~~===—~~ VIEYSVIL-TD-~-=========—
! G69605

-MIFMKTLIEG-~-ETHMAKKVDAEYYRQLEQIQAAD- -~~~ FVLVELSLYLNTHPHDEDALKQFN-QYSGYSRHLKRQFESSYGPLLQFG---~-- NSPAGKDWDWGKGP -~ ~WPWQV -~

Fig. 1. The multiple alignment of chain A of protein hemerythrin (oxy) 1HMO.

between 0 and 1 with

putpEtpc=1 (@)

Usually the predicted conformational state corresponds to
that with the highest probability, but sometimes there are
exceptions. The GOR 1v program has been previously tested
on various sequences with known structure. Usually the
predictions of the GOR 1v program are accurate in the 60—
70% range, with the average accuracy (tested on the
relatively large sample of proteins) being 64.4% [7].
The accuracy of the prediction is measured by calculat-
ing the percentage of the sequence residues with the
correctly predicted conformational states. Other methods
used for the secondary structure predictions such as
neural network methods or nearest-neighbor methods
have similar or lower success rates when based on
single sequence [8]. A big advantage of the GOR
method over other methods is that it clearly identifies
all factors that are included in the analysis and calculates
probabilities of all three conformational states.

Sequence comparison is one of the most important
methods in computational biology. Different sequences are
compared to each other to find out which parts of the
sequences are alike and which are dissimilar. The similarity
of sequences is usually related to their evolutionary depen-
dence. In the alignment of two sequences the sequences are

treated as text strings where each letter in the string corre-
sponds to the one letter code for a given residue at the
specific position along the protein sequence. The alignment
of two sequences can be visualized as a process of sliding
one character string over another string trying to find the
best possible match, where most characters of two strings
are similar or belong to the same classes of residues (such as
residues that are charged positively or negatively, aromatic,
aliphatic, etc.). The quality of alignment of the two
sequences is measured by a properly defined score. Addi-
tionally, in the process of the alignment the cutting of the
text strings and the creation of gaps is allowed (but subject
to some penalties in the calculation of the score). There are
standard programs developed for the alignment and compar-
ison of two as well as multiple sequences. One of the most
popular programs is FASTA, one of the family of FAST
programs for sequence database search [10]. Because the
problem of sequence alignments is relatively unknown to
the polymer community we illustrate it below. We show the
alignment of two protein sequences. The first (upper)
sequence corresponds to chain A of the protein hemerythrin
(oxy) which has 113 residues and the known structure
(IHMO) deposited in the PDB, the second (lower)
sequence corresponds to S16190 myohemerythrin-poly-
chaete (Nereis diversicolor) a protein of known sequence
but unknown structure. The alignment of these two
sequences was obtained with the FASTA program. The
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vertical bars | between these two sequences correspond to
the exact matching of residues (identical characters in two
strings), while the colons: illustrate the partial matching
when two residues belong only to the same category of
aminoacid (like I and V at the fourth position in two strings,
because Isoleucine (I) and Valine (V) are both bulky
aliphatic). In order to get the best sequence alignment
two single gaps (after Met62 and Gly69) marked by —
and a longer gap of the length of five residues after
Thr92 were created in the sequence of lhmo_a. The
total length 120 of the alignment consists therefore of
113 residues of IHMO_A and seven gaps.

logous proteins coincides with their structural alignment,
and therefore aligned residues, especially those inside
the protein core, have mostly similar secondary struc-
tures. Multiple alignments, besides the information
about the identity of the aligned residues, provide infor-
mation about the location of gaps and the distribution of
mutations in the multiple aligned sequences of homolo-
gous proteins. However, the detailed basis for the
improvement of the secondary structure prediction by
using multiple sequence alignments has not been yet
fully developed.

Our method consists of several steps. First we have

10 20 30 50 60

1HMO_A GFPIPDPYCWDISFRTFYTIIDDEHKTLFNGILLLSQADNADHLNELRRCTGKHFLNEQQ
Eelele 0 Tes bl s le b0l s ldede e sl lelees Teel] el

516190 GFEVPEPFKWDESFQVFYDKLDEEHKQIFNAIFALGGGNNADNLKKMIDVTANHFADEEA
10 20 30 50 60
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1HMO_A LM-QSSQYAG-YAEHKKAHDDFIHKLDTWDGDVT - - - —— YAKNWLVNHIKTIDFKYRGKI
S P T I Y PR NEINIIREIE

S16190 MMLASAAYKSEHPGHKKKHEDFLAVIRGLSAPVPNDKLLYAKDWLVNHIKGTDFTYKGKL

70 80 90

Multiple sequence alignment is a similar problem, but
instead of aligning two sequences we have to align together
larger numbers of sequences, and because of this the
problem is computationally more complicated, especially
if both insertions and deletions in sequence are allowed.
Several standard programs have been developed in com-
putational biology for this purpose, and one of the most
popular is the family of CLUSTAL programs. Fig. 1
shows the multiple sequence alignments. The same chain
A of the protein 1HMO is now aligned with 16 other
sequences by using CLUSTALX — one of the programs for
multiple alignments from the CLUSTAL family. The lines
starting with ! contain the names of the proteins whose
sequences are displayed in the line below. The alignment
of IHMO_A and S16190 obtained in the multiple alignment
is now slightly different than the alignment of these two
sequences as obtained with FASTA.

The multiple sequence alignments have been proposed
and used earlier to improve the secondary structure predic-
tion. The inclusion of evolutionarily related sequences can
improve significantly the prediction of secondary structure
[6,15-16,20—24,29].

Such improvement in the accuracy of the prediction is
due to the fact that the sequence alignment of homo-

110 120

chosen a set of proteins with known structures published
in the Protein Data Bank:

www.rcsb.org/pdb. All these proteins have well deter-
mined structures (the resolution of the structure is better
than 2.5 A, mostly better than 2.0 A). The proteins were
chosen to represent various classes of proteins and various
folds. The list of the structures we have chosen is given
below:

1A58 (Cyclophilin)

IHMO (Hemerythrin (oxy)) chain A

12GS (Glutathione S-Transferase) chain A

1HGE (Hemagglutinin) chain A

1TF4 (T. Fusca Endo/Exo-Cellulase) chain A
IHXN (Hemopexin)

1AS8L (Protein Disulfide Oxidoreductase)

1AVA (Barley a-Amylase 2(Cv Menuet) chain A
1AVA (Barley a-Amylase/Subtilisin Inhibitor) chain C
1ARL (Apo-Carboxypeptidase)

. 1DQI (Superoxide Reductase) chain A

. IAVM (Superoxide Dismutase) chain A

NN R L=

—_—
D =S

None of these proteins belongs to the databank of the
GOR program, nor has a strong identity to any of 267
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proteins in the GOR databank. We checked for such possi-
ble similarities by using the BLAST program available on
the National Center of Biotechnology Information of NIH
webpage http://www.ncbi.nlm.nih.gov/BLAST/.

BLAST calculations detected only four similarities
between the set of the proteins listed above and the databank
of GOR proteins: 28% identity between 1HMO_A and
3SDH_A, 29% identity between 1AVA_C and ITIE, the
23% identity between 1AVA_A and 1CGT, and the 49%
identity between 1AVM_A and 1ABM_A. All these iden-
tities are less than 50% and therefore do not introduce a
strong bias for our predictions of the secondary structure.

For each of these 12 target proteins we make the sequence
alignments against remote homologous sequences available
in the PIR database by using the FASTA program (Wisconsin
Package, version 8 of the Genetic Computer Group). PIR is
the protein sequence database of PIR-International. The
database is a collaborative project between the Protein
Information Resource (PIR) at the National Biomedical
Research Foundation (NBRF) affiliated with the George-
town University Medical Center, the International Protein
Information Database in Japan (JIPID) and the Munich
Institute for Protein Sequences (MIPS). The PIR database
is available on the webpage: http://pir.georgetown.edu/.

For each of the 12 target proteins we have chosen through
sequence alignments homologous sequences from the PIR
database having the pairwise sequence identity to the target
protein greater than 20—30%. The identity percentage limit
was dependent on the number of sequences found. If, for a
given target protein, FASTA found large numbers of homo-
logous sequences the identity limit was set to 30%, whereas
for proteins for which FASTA produces a relatively small
number of homologous sequences the identity limit was
lowered to 20%. This range of sequence identity limits
was suggested in recent work of Geetha et al. [9]. All
sequences satisfying the identity criterion (for a given target
protein) obtained from the PIR database through the pair-
wise FASTA alignments are subsequently used in sequence

Table 1
Protein structures studied

Protein Chain Number of Number of protein
residues in the multiple
alignment file
1AS8 177 112
1HMO A 113 17
12GS A 210 62
1HGE A 328 132
1TF4 A 605 63
1HXN 210 9
1A8L 226 51
1AVA A 403 104
1AVA C 181 73
1ARL 307 50
1DQI A 124 14
1AVM A 201 145

multiple alignments with cLusTAaLX. Fig. 1 shows the case
of the multiple alignment for the chain A of IHMO. The
FASTA alignments of sequences from the PIR database led to
the selection of 16 homologous sequences satisfying the
similarity criterion. Those 16 sequences and the sequence
of the target protein (IHMO_A) were used in the multiple
sequence alignments of the 17 sequences shown in Fig. 1.

The number of sequences in the multiple alignments is
shown in the last column of Table 1. Table 1 shows also the
number of residues (chain length) of each target protein. The
multiple alignments obtained by the CLUSTALX program
were then reformatted to the FAsTA format (as shown in
Fig. 1) and used as input for the GOR 1v program. For each
(jth) residue in the (ith) sequence GOR 1v calculates prob-
abilities of helix (H), extended (E) and coil (C) state, and the
conformational state prediction, as discussed in detail in the
earlier part of this paper. The GOR program output neglects
information about gaps in the sequence, and therefore the
results of the calculations were reformatted by adding infor-
mation about gaps. As the result of calculations we obtained
three matrices Py(i,j), Pg(i,j), Pc(i,j) with elements show-
ing the GOR 1V program probabilities of conformational
states H, E and C (normalized according to Eq. (5)) for
the jth residue in the ith multiple alignment sequence. The
size of these matrices is m_n, where m is the number of
aligned sequences and # is the total length of the alignment.
For the multiple sequence alignment shown in Fig. 1 the
number of aligned sequences is m = 17 and the length of the
alignment n = 121. The length of the alignment is longer
then the length (113 residues) of the 1HMO_A chain,
because of the extra eight gaps in the sequence IHMO_A
in Fig. 1.

In the final step, we calculate the averages (Py())),
(Pg))), {Pc(j)) by summing up the elements of matrices
Py(i,j), Pe(i,j), Pc(i,j) at the jth position (1 =j =n) in
the sequence in the multiple alignment over all m sequences
(rows) and dividing the results of the summation by the total
number of entries (excluding gaps) in the jth colum of multi-
ple sequence alignment file. The vectors (Py())), {(P(j))
and (Pc(j)) were then contracted in size by skipping
elements corresponding to gaps in the sequence of the target
protein. For example Fig. 1 shows the size of vectors
(Pu(j)), (Pe(j)) and (Pc(j)) was reduced from 121 to 113
— the original length of the IHMO_A chain. After this
contraction the index j in {(Py( j)), {Pg( j)) and (P¢( j)) corre-
sponds directly to the jth residue in the original sequence of
the target protein.

The probabilities (Py(j)), (Pg(j)) and {(Pc(j)) allow us to
predict the conformational state of the jth residue in the
sequence of the target protein. The conformational state v
(v=H,E or C) of the jth residue which has the highest
probability P,(j) = max(Pu(/)), (Pe()), (Pc(j))) is the
natural choice for the prediction. We call this method the
average multiple alignment prediction and use the notation
P for the calculated accuracy of this prediction.

We have tried also to use other schemes for predicting the
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Table 2
Proteins from the multiple alignment file for 1A58 with the best GOR
predictions

Table 4
Proteins from the multiple alignment file for 12GS with the best GOR
predictions

Ranking Protein GOR prediction Percentage Ranking Protein GOR prediction Percentage
position name agreement with the position name agreement identity with the
(in %) target protein (in %) target protein

1 S48567 79.1 57.8 1 A46048 71.9 30.0

2 T27882 76.3 60.2 2 JC6529 69.5 97.1

3 CSTO 73.5 60.9 3 $24330 68.6 31.8

4 A46579 71.2 57.4 4 S43431 68.1 32.1

5 T27371 70.6 60.2 5 T21898 68.1 31.3
25 1AS8 65.5 100.0 7 12GS_A 67.6 100.0

secondary structure. A different method for making a
prediction was based on matrices Py(i,j), Pg(i,j) and
Pc(i,j) and the assumption that for a given jth position in
the sequence the ith sequence among m sequences which
has the largest probability max (Py(i,j), Pg(i,j), Pc(i,j)))
(where now we seek the maximum not only over three
conformational states, but also over m sequences) at this
position is the proper conformational choice. We call this
method the strongest prediction scheme and use the notation
Pgyong Tor the accuracy of this prediction.

Because conformational predictions of the GOR method
do not always coincide with states with the largest probabil-
ities, we also use a prediction scheme based not on prob-
abilities but on the counting of actual GOR conformational
predictions for each residue in the multiple aligned
sequences. The criterion of the predicted state was the maxi-
mum number of such predictions counted for a given resi-
due in the sequence. In the case when two states had similar
numbers of predictions the state with the larger average
probability was chosen. We call this method the counting
scheme and use the notation P, for the accuracy of this
prediction.

We have also tried the combination of the GOR single
sequence prediction with the multiple sequence alignments.
In the case when the GOR single sequence prediction of the
conformational state for a given jth residue of the target protein
is strong enough to have the probability p(j) exceeding a
specified minimum value p,,;,, we used this single sequence
prediction. If the single sequence prediction of the conforma-

Table 3
Proteins from the multiple alignment file for IHMO with the best GOR
predictions

Ranking Protein GOR prediction Percentage
position name agreement identity with the
(in %) target protein

1 S50177 78.8 39.1

2 HRIN 73.5 46.9

3 S$16190 72.6 425

4 JX0184 70.8 40.0

5 $38261 69.9 43.7

13 IHMO_A 525 100.0

tional state of the target protein was weak (p(j) < ppin) We use
the multiple sequence alignments (similarly as for Ppuq
predictions) to improve the prediction. We have tried several
values of the parameter p,,;, measuring the required minimal
strength of the single sequence prediction; the best results
were obtained for p,;, = 0.7 for probabilities 0 = p(j) = 1
satisfying Eq. (5). We call this method which is the mixing
of GOR single sequence predictions with the multiple
sequence alignment prediction a mixed method and use
the notation P, for the accuracy of this prediction.

3. Results and discussion

The results of all calculations are summarized in Tables
2-13 and in Table 14. Tables 2—13 show the results of the
GOR calculations for each of the 12 target proteins with
known structure. Sequences with the unknown structures
in the multiple sequence alignments are assumed to have
the structure of the target protein. Based on this assumption
the GOR (single sequence) prediction of the secondary
structure for each sequence in the multiple alignments is
performed and the accuracy of the prediction for each
sequence is calculated. We used the information about
secondary structure of target proteins directly from the
Protein Data Bank. We did not use the DSSP algorithm to
assign ‘correct’ secondary structures. The sequences from
the multiple alignments are then ranked according to their
prediction accuracy. Tables 2—13 show for each target

Table 5
Proteins from the multiple alignment file for IHGE with the best GOR
predictions

Ranking Protein GOR prediction Percentage
position name agreement identity with the
(in %) target protein

1 HMIVHM 74.1 95.1

2 HMIVDU 72.3 95.1

3 HMIV77 70.4 96.0

4 HMIVBH 69.8 234

5 S01882 69.8 23.7
18 IHGE_A 68.6 100.0
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Table 6
Proteins from the multiple alignment file for 1TF4 with the best GOR
predictions

Table 8
Proteins from the multiple alignment file for 1A8L with the best GOR
predictions

Ranking Protein GOR prediction Percentage Ranking Protein GOR prediction Percentage
position name agreement identity with the position name agreement identity with the
(in %) target protein (in %) target protein

1 JC5874 61.3 534 1 H71239 74.8 88.5

2 A39199 58.4 73.1 2-3 1ASL 72.1 100.0

3 1TF4_A 57.7 100.0 2-3 S$54843 72.1 100.0

4 140807 55.9 56.0 4 F75204 71.7 88.9

5 S$12021 55.5 57.1 5 AT2669 65.5 38.1

protein the first five sequences with the highest prediction
agreement and the position of the target protein in the rank-
ing. For each sequence the percentage identity with the
target protein is displayed. Tables 2—13 show very interest-
ing features, the GOR prediction of the secondary structure
for the sequence of the target protein is always worse than
the prediction incorporating some other homologous
sequences. For 1A58 (Table 2) there are 24 out of 112
homologous sequences that have better predictions of the
secondary structure than 1A58 itself, and sequences with the
best prediction have about 60% identity to 1A58. The best
prediction 79.1% 1is obtained for a sequence (S48567),
which has 57.8% identity with 1A58. The GOR prediction
for 1A58 based on its sequence is 65.5% correct. For
IHMO_A (Table 3) there are 12 out of 19 sequences,
which provide better prediction of the secondary structure
than 1AS5S8_A. Sequences with the best ranking of the
prediction have identity to 1A58_A of the order of 40%.
The best prediction (with 78.8% accuracy) for S50177 is
much above the GOR prediction for IHMO_A, which is a
mere 52.5%. For the case of 12GS_A shown in Table 4, the
target protein takes 7th place (out of 62 sequences) in the
ranking of the accuracy of the prediction, and the gap
between 12GS_A (67.6% accuracy) and the best prediction
(71.9%) is much lower than in the previous case
(IHMO_A). The sequence that has the best prediction
(A46048) has only 30% identity with the target protein.
This shows that homologous sequences with relatively
low identity are also important for improving secondary
structure prediction. In some cases (such as 12GS_A, or

Table 7
Proteins from the multiple alignment file for IHXN with the best GOR
predictions

Ranking Protein GOR prediction Percentage identity
position name agreement with the target
(in %) protein

1 OQRT 63.5 73.0

2 A55486 63.5 73.7

3 OQHU 59.8 83.1

4 A40774 58.9 31.1

5-6 OQRB 57.8 100.0

5-6 IHXN 57.8 100.0

1AVA_C) the best prediction is given by sequences with
low identity to the target protein, in some other cases (such
as 1HGE_A) homologous sequences very similar to the
target protein give the best prediction.

Table 14 summarizes the results of our calculations. For
each target protein the accuracy of the single sequence GOR
prediction Pgpge is compared with various multiple
sequence alignment prediction schemes discussed in the
previous chapter. The average multiple alignment predic-
tion Py is based on probabilities (Py(j)), (Pg(j)) and
(Pc(j)) calculated from the GOR multiple sequence align-
ment predictions. Results for the strongest prediction
method with accuracy P, are based on the largest
elements of the matrices Py(i,j), Pg(i,j) and Pc(i,j). The
accuracy of the prediction Py, is based on the counting
of the GOR conformational predictions, for all sequences in
the multiple alignment. The mixed method with accuracy
Prixeq 18 the prediction scheme combining the GOR single
sequence prediction with the multiple sequence alignment if
the single sequence prediction is not strong enough (less
than p;, = 0.7).

The last row in Table 14 shows averages of these predic-
tions over all 12 target proteins studied in this paper. The
comparison of these various prediction schemes show that
the strongest prediction method Py is the worst one, and
on average (64.1% accuracy) it is only slightly better than
the average GOR prediction for the single sequence Pipge
(63.4%). All other three prediction schemes give almost
similar predictions averaged over the 12 proteins P
(71.9%), Peount (711.9%), Ppixea (71.5%).

Table 9
Proteins from the multiple alignment file for IAVA (chain A) with the best
GOR predictions

Ranking Protein GOR prediction Percentage
position name agreement identity with the
(in %) target protein

1 S$14956 65.5 71.6

2 S$14957 65.3 72.1

3 JT0946 65.0 70.6

4 JC7138 65.0 70.6

5 505667 64.5 30.0

20 1AVA_A 55.1 100.0
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Table 10
Proteins from the multiple alignment file for IAVA (chain C) with the best
GOR predictions

Table 12
Proteins from the multiple alignment file for 1DQI with the best GOR
predictions

Ranking Protein GOR prediction Percentage Ranking Protein GOR prediction Percentage
position name agreement identity with the position name agreement identity with the
(in %) target protein (in %) target protein

1 JX0310 69.6 27.8 1 H71102 774 74.2

2 JX0311 69.1 27.8 2 F75136 69.4 70.2

3 TIWDKB 69.1 315 3 H69292 64.5 67.8

4 TIWDK 69.1 30.9 4 G72348 64.5 57.0

5 A24082 68.0 29.0 5-6 T44571 62.9 100.0
25 1AVA_C 61.9 100.0 5-6 IDQI_A 62.9 100.0

This shows that multiple sequence alignment improves
significantly the prediction of the secondary structure. On
average the improvement is of the order of 8.5%, but for
some individual proteins, such as IHMO_A the improve-
ment is as high as 24%.

We have tried several methods to further improve
the prediction of the secondary structure. A simple
improvement can be made by a critical analysis of the
predicted conformational sequence. The GOR algorithm
sometimes gives predictions that are unphysical, such as
a helix or a sheet having a length of one or two resi-
dues, or H and E states, which are nearest neighbors
along the sequence. We have employed a correction
algorithm to the results of average multiple alignment
prediction P;. We impose the requirement that helices
(H) and strands (E) must have at least a length of three
residues each, and that these two states cannot be direct
neighbors along the sequence, and that E and H
conformations must be separated by at least one coil
(C) state. If the conformational sequence obtained by
using the P,,; methods violate at the jth position in
the sequence any of these rules, then the second most
probable state (instead of the state with the highest
probability) was taken as the choice from the {(Py(})),
(Pe(j)) and (Pc(j)) vectors. Such corrected predictions
are shown in the fourth column (Pic) Of the Table
14. The average improvement (averaged over 12 proteins)
over P, prediction by using this correction scheme is
2.5%.

For the prediction of tertiary structure from secondary

Table 11
Proteins from the multiple alignment file for 1ARL with the best GOR
predictions

structure it is often important to have some secondary struc-
ture elements predicted with very high degree of certainty to
use as starting points. This means, for example, that instead
of having the whole secondary structure predicted with 70%
accuracy, it may be better to have only 85% of the second-
ary structure predicted, but with the greater confidence of
82%. We have tried to find out for each target protein the
conformational states, which could be predicted with a
higher level of confidence. We impose the requirement
that the prediction of the secondary structure by using the
average multiple alignment prediction method P,,,;; (based
on probabilities (Py(j)), {Pr(j)) and {Pc())) must be strong
enough, i.e. that the difference between the probability of
the predicted (most probable) state and the probability of the
second most probable state at the jth position in the
sequence must be larger than a certain minimum value A.
If the difference is less than A the conformation of second-
ary structure for this position is indeterminate (marked by ?)
and the whole conformational sequence is composed of four
elements: H, E, C and ? (indeterminate states).

We have performed the calculations using two different
values of this parameter

A =0.1 and A = 0.2 (with probabilities normalized to 1
according to Eq. (5), so 4 is 10% or 20%). The last columns
show results of the secondary structure prediction for these
two cases, and the percent of indeterminate states for the
two values of A.

For A = 10% average prediction of the secondary struc-
ture has 77.0% accuracy with 22.0% of unpredicted states.
By increasing A to 20% the confidence of the prediction of

Table 13
Proteins from the multiple alignment file for IAVM with the best GOR
predictions

Ranking Protein GOR prediction Percentage Ranking Protein GOR prediction Percentage
position name agreement identity with the position name agreement identity with the
(in %) target protein (in %) target protein

1 A56171 73.6 67.5 1 T42080 73.6 57.9

2 $29127 72.6 81.1 2 S15205 71.1 63.1

3 CPBOA 71.0 99.3 3-4 1AVM_A 70.7 100.0

4 1ARL 69.7 100.0 3-4 JC4396 70.7 100.0

5 A32128 69.1 65.7 5 504423 70.2 40.9
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Table 14

Comparison of the results of the GOR secondary structure prediction for a target protein with various methods using multiple alignments. All predictions are

measured by the percentage of correct residue sequence conformations

Target protein Pingle P Pouiti_cor Prong Pount Prived P Fraction of P Fraction of
A=10% indeterminate A=20% indeterminate
states A = 10% states A = 20%
1A58 65.5 76.8 79.1 74.6 78.0 76.8 80.3 14.1 82.3 36.2
1HMO_A 522 76.1 79.6 65.5 75.2 75.2 80.3 28.3 84.6 54.0
12GS_A 67.6 71.0 724 60.0 714 71.9 76.9 19.5 82.4 37.6
1HGE_A 68.6 73.8 774 69.5 73.8 72.9 77.8 16.2 82.9 357
1TF4_A 57.7 64.0 65.6 62.0 63.3 64.5 69.2 24.8 72.5 41.7
IHXN 57.1 66.2 70.8 58.9 63.0 65.8 71.2 22.4 81.9 42.0
1A8L 72.1 76.1 76.5 61.1 71.9 76.1 80.6 22.6 80.8 46.9
1AVA_A 55.1 66.3 67.0 58.6 63.8 66.3 71.0 29.8 77.2 49.9
1AVA_C 61.9 78.5 82.3 70.7 76.2 75.7 85.0 18.8 88.6 37.0
1ARL 69.7 73.6 76.9 69.7 74.9 73.6 80.9 26.7 82.0 44.0
1DQI_A 62.9 70.2 71.8 63.7 73.4 69.4 76.8 23.4 82.1 46.0
1AVM_A 70.7 70.1 73.1 55.2 72.1 69.7 73.9 17.9 76.6 36.3
Averages 63.4 71.9 74.4 64.1 71.9 71.5 77.0 22.0 81.2 423

secondary structure was increased to 81.2% but the fraction
of indeterminate states became significantly higher at 42.3%.

We have shown that by incorporating the multiple sequence
alignment information into the GOR algorithm, we substan-
tially improve the prediction of the secondary structure. The
improvement of 8.5% to the 71.9% prediction accuracy is
close to the improvements obtained by neural network
programs (PHD and PsiPred). The correction for short helices
and strands and exclusion of HE neighbors further improves
the prediction to 74.4%. The new method also enables us to
predict the secondary structure of a substantial part of the
sequence with a confidence level greater than 80%. This
shows that this new method is promising, and may success-
fully compete with artificial intelligence techniques. The
method will be tested in the near future for more protein struc-
tures. The inclusion of additional information such as hydro-
phobicity of residues in the multiple alignments may help in
further improving the method.
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